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On a gradient -1ike integro-differential equation
by

Jack K. Hale and Krzysztof P. Rybakowski

Abstract

Let b: [-1,0] *R be a Cz—function, b(6) > 0, 8 € (-1,0], b(1) = O,

b'(8) >0, b"(B) >0, 8 € [-1,0] and there is a 80
X

Suppose g: R *R 1is a Cl—function such that [ g(s)ds + © as lxl + @
0]

such that b"(eo) > 0,

and consider the equation
. 0
x(t) = -[ b(B8) g(x(t+8))d8
-1

Every solution of this equation approaches a zero of g. If the zeros of
g are bounded, there is a maximal compact invariant set Ab,g of this
equation in C([-1,0], R) which is one dimensional and consists only of
the zeros of g and the unstable manifolds of these zeros. If g has
only one zero, then Ab,g is a point. If g has no more than three

simple zeros, then the set Ab g is simply an arc with the unstable zero
’

connected to the stable ones. In the class of g which have five simple

zeros, we show that there are five distinct ways that the zeros of g can
be connected by orbits in Ab,g' Only one of these preserves the order

of the zeros on the reala. This shows clearly the importance of consider-
ing the set Ab, and the structure of the flow on this set rather than

just asserting that every solution approaches a zero of g.
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' 1. Introduction

Let b: [-1,0] * R be a Cz-function such that b{(8) > 0, 6 € (-1,0],

b(-1) = 0, b'(6) >0, b"(6) >0 for 6 € [-1,0] and there exists a
60 € {-1,0] such that b"(eo) > 0. Suppose g:R +R isg a C1~function
and consider the equation
0
(1.1)(b,g) x(t) = -J_lb(e)g(x(t+9))d9

For any ¢ € C = C([-1,0], R), there is a unique solution x(¢)

through ¢ at t = 0. If Tf(t): C+C 1is defined by [Tf(t)¢](e) -

x(¢) (t+8), then Tf(t), t > 0, is a strongly continuous semigroup on C.

We think of the solution x(¢) of (1.1)(b,g) as defining a curve
{Tf(t)¢, t 2_0} in C and, therefore, can consider the geometric con-
cepts of w~limit sets, a~limit set and invariant set (see [l]).
Suppose f; g(s)ds * ® as |x] > ®. It is known (see [1,2])) that
the w-1imit set of every solution of (1.1)(b,g) is a zero of g and,
also, the a-limit set of any nonconstant bounded solution of (1.1)(b,g) is an
‘ unstable zero of g. If a 4is a zero of g then a 1is hyperbolic {f

| and only 1f g'(a) ¥ 0, uniformly asymptotically stable if g'(a) > 0

and unstable 1f g'(a) < 0. Furthermore, the unstable manifold w“(a)
of a 1s one dimensional if a 1s unstable.

If the set of zeros of g 1is bounded, then there is a bounded set

B such that every solution eventually enters B, that is, (1.1)(b,g)
is point dissipative. It follows (see [1,2]) that there is a maximal
o compact invariant set Ab g for (1.1)(b,g) which is uniformly asymptoti-
’

cally stable and attracts bounded sets of C.
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From the fact that the a-limit set of any nonconstant bounded solution is
an unstable zero of g, it follows that Ab’é=LJ{wu(a): g(a) = 0} and
Ab,g 18 one dimensional. The purpose of this paper is to discuss in
some detaill the structure of the set Ab,g for a fixed b and a certain
class of g.

Let Gk be the class of all Cl—functions g satisfying the follow-

ing conditions:

X
1) f g(s)ds * @ as [x| + =,
0

2) g has exactly 2k+l zeros a, < a, <

1 9 cee < At1 all of which

are simple.

Let the topology on G be that generated by the seminorms ||g||M =

k
supxeu(lg(x)l + lg'(x)l), where M 1s a compact set in IR. For any

g € Gk’ all zeros of g are hyperbolic and the zeros aZj’ 3= 1,2,...,k,

are saddle points with unstable manifolds Wu(a ) one dimensional. Thus,

23

for each aZj’ there are exactly two distinct orbits defined for t € (-=,»)

whose a-limit sets are a We call these orbits emanating from a

23"

23"
Fix b as above. Let g,é € Gk have a and a, <

< ves e a
1 2kt 1 < 241
resp., as their zeros. Call g and g equivalent (g ~ g) if for all
i,j € {1,...,2k+1}, there is an orbit x(t) of (1.1)(b,g) emanating from
and tending to a, as t > ® 1if and only if there is an orbit x(t)

b
of (1.1)(b,g) emanating from a

ay

g and tending to EJ as t + =, This

clearly defines an equivalence relation on Gk. We say g € Gk is
~-gtable 1f the equivalence class of g 1is a neighborhood of g in Gk'
It 18 not difficult to show that g is ~ stable if the w-limit

set of every orbit in Ab g which is not a point 1s a stable zero of g;
»




that is, a point a , n odd, 1 < n < 2k+l. Since Ab is a global
n - - %4

attractor and uniformly asymptotically stable, this is equivalent to
saying that g 1is ~-stable i1f the w-limit set of every orbit of
(1.1)(b,g) defined and bounded on (-»,=) 1is a stable zero of g. If

it were known that the map T, (t) 1is one-to-one on Ab g’ this latter
»

b,g
statement would be equivalent to the following: there is a neighborhood :
V of g such that, for any g € V, there is a homeomorphism of Ab g

1

onto Ab § which preserves orbits and sense of direction in time; that is,
»

g 1is structurally stable when the map Tb g(t) is restricted to Ab g
’

We have not been able to prove that T (t) 1is one-to-one on Ab g and
»

b,g
this is the reason for taking the weaker definition of equivalence. If

g 1s analytic, then Tb 8(t) is one-to-one (see [1]).
]
The ultimate objective would be to describe the equivalence classes
in G,. The cases k = 0,1 are trivial. Suppose k = 2; that 1s, each

k

g € 62 has five zeros a; < a, < ay < a, < ag with a,,a, being saddle

points, and a1,84,8g being uniformly asymptotically stable. If aJ is

an unstable equilibrium point with a8y being the corresponding w—-limit

sets of the orbits emanating from a,, we designate this by j[k,%]. The

b

structure of the flow on Ab g and the equivalence classes in G2 are
»

then determined by a pair {2[1,3),4[k,2)} expressing the fact that the

unstable manifold through a, has w-limit set {ai.aj} and the one

through a, has W-limit sget {ak,az}.

Our main result states there are exactly five equivalence classes

in G,; namely {2(1,3),4(3,5]}, {2[1,4),4[3,5]1}, {2[1,5),4(3,5]},

{2[1,3),412,5)}, {2[1,3},4(1,5)}. The only class that preserves the
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natural order of the reals on A . is {2[1,3),4[3,5]}. The first,
third and fifth cases are ~-stable. The second and fourth cases have
a connection between the saddle points 82 and a,.

that these cases are not ~-stable, but no proof 1s available.

It seems plausible

The fact that five equivalence classes can occur indicates clearly
the importance of studying the structure of the flow on Ab.g rather than
merely asserting that every solution of (1.1)(b,g) approaches a zero
of g.

We have not characterized the equivalence classes in Gk for k > 3,

but it should be possible to adapt the methods below to this case.




2. This section is devoted to the statement and proof of several lemmas.

Lemma 2.1. For every p > 0, K > 0, there 1is a C0 - CO(K,p) > 0 such

that, for all C, 0 < C < Cy» and all a, 4, la] <k, la| - 2|A]l > ¢,

the solution y(n) of the difference equation

y(n) = y(n-1) - Cy(n-2), n >1
(2.1)
y(0) = a+ 4, y(-1) = a

satigfies sgn y(n) = sgn a for =n > -1,

Proof: Let A, = Ai(c) be the roots of the characteristic equation

i
Xz ~A+C=0. If 0<C < 1/4, then Al,kz are real, nonnegative and
distinct, say Xl(C) < XZ(C). Moreover, Ai(C) is continuous in C with

Al(O) = 0, AZ(O) = 1. For the initial data specified in (1.2) and =n > -1,

n+l

Opmh)dy@) = (a(l-A) + OAT + (aOy-1) - g

The remainder of the argument follows easily from the fact that Xl(O) =0,

AZ(O) = 1 and the hypotheses on a,A.

Lemma 2.2. For every ¢ > 0, X > 0, there is an my = mo(p,K) such

that, for all 0 <m < o and f(x) = mx, the following properties hold:

1) If ¢(8) 4is continuous, positive and nonincreasing on [-1,0],

¢(-1) <K and ¢(-1) - 2[¢(-1) - #(0)] > p, then the solution x(t) of

(1.1)(b,f) through ¢ satisfies O < x(t) < ¢(0) for t € (0,) and

x(t) -0 as t - o monotonically.

2) If ¢(8) 4is continuous, negative and nondecreasing on [-1,0],

-¢(-1) < K and -¢(-1) - 2(¢(0) - ¢(-1)) > p, then the solution x(t)

of (1.1)(b,f) through ¢ satisfies ¢(0) < x(t) <0 for t € (0, and

x(t) *0 as t » = wmonotonically.




e L A v A At e st oy

Proof: Fix p > 0, K> 0 arbitrarily. With C0 = Co(o,K) as in Lemma

0
= CO/M, M= f b(6)d8. Let 0 <m<m
~1

2.1, define be arbitrary and

"o 0
define C = mM. Suppose ¢ satisfies the hypotheses in 1) and let y(n)

be the solution of (1.2) with a = ¢(-1), a + & = ¢(0). From Lemma 2.1,
y(n) 1is decreasing, 0 < y(n) < ¢(0), n > 1, y(n) + 0 as n + = Let
t 20 be the unique minimal t > 0 such that x(tn) = y(n) and set

t ,==-1, t, = 0. To prove the claim 0 < x(t) < ¢(0) 4in 1), 1t i8 suff- :

-1 0

{icient to show that ¢t t > 1 for every n > 1. This inequality

n-1 n-2

is true for n = 1. Assuming that it holds for some n, we obtain

-Cy(n-2) = y(n) - y(n-1) = x(tn) - x(tn_l)

t 0

. _f n (f b(0)mx(5+6)d6)ds
t -1

n-1

> -(tn-tn_l)Cx(tn_l-l)
Z,-(tn-tn_l)cx(tn_z) - -(tn-tn_l)Cy(n-Z)

‘ This implies t - tn-l > 1 and proves 0 < x(t) < ¢(0), t > 0. Thus

x(t) 18 decreasing for t > 0 and approaches zero as t + =. (Case 2)

is proved by replacing x by -x.

5 Lemma 2.3. Let a),0,,m, and K be real numbers, a ¢ a,, m, < 0,
K>0. Let I=[aj,a,] if o <a, and I = [uz,ull if a, <a,.

Then there is a mapping f: I + R, f € Cl(I), |£! <K on I, £'(a,) = m,

£ {0} = {al,az}, f 1is affine in a neighborhood of a, and a, and

1 2

1
there is a function x: R + Int I, x € C (R), such that 11mth(t) -Q

1.
limt*d_x(t) = 02, emd x satisfies (1.1)(b,f).
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Proof: Assume that the lemma is true for oy < a, and suppose ay < a,.

Let al = az, az = al. Then al < az. Choose f = f(al.az,mz),

x = ;(El.az,mz) as in the statement of the Lemma. Define f: [02.a1] + R,

f(x) = —Eka1+a2-x) and x(t) = al + az - ;(t). Then it 1s obvious that

f and x satisfy the Lemma. Hence it is enough to prove the Lemma for

a) <a,.
Let fz(x) - mz(x-az). Then by the assumptions on b, there is a
At
unique AZ > 0 such that x(t) = a, - e 2 is a solution of (1.1)(b,f2)

on (~o,®), Let K = 2(a2-a1), p= (1/3)(a2-u1). Choose my = mo(o,K)

as {n Lemma 2.2, For 0 <m<m fl(x) - fl(m)(x) - m(x~a1) let

0!

f =~
1 VAR f
2
) g rd
m 2 TN
o a
N B
Figure 1

X = x(m) be the unique coincidence point of f ana Afz (cf. Fig. 1).

1
-~ A At
Let t = t(m) be the unique point such that a2 - e 2, X. Define

on (==,x), h = f2 on [x,a.] and h is

h-hm:ll-'m so that h = f

1

1 W e s—snde
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arbitrary on (02,”) but such that h € G and the zeros of h are:

1

a, < a, < 8 where B 1is some real number. Fix € >0 and a such
that al <qa < a2 - €, and (az-e) - al >2p + 2(a2—a).

If X(t)' t > 0, is the solution of (1.1)(b,h) through $(©) =

A, (€+8) At ,. .
a, - e , define z(t) = o, - e for t < t, z(t) = y(e-t) for

t > t. It follows that z(t) solves (1.1)(b,h) on (-=,®). Also, it
is clear that there is a unique minimal t' = t'(m) such that z(t') = a.
For m small enough x> az- € and hence t' > E. Moreover,

- t' (0
z(t') - x = z(t') - z(t) = —JA (f b(8)h(z(s+0))dbds.
t ‘-1

Since &% > z(t) > a for t € [t,t'], we have 0 < g(z(t)) = m(z(t)-a)}

for such t, and this implies
|z(e")-%| < Mem(e'-0) (x-0)),

0
where M = I b(6)d0. Hence,
-1

0<a,-€-a<(X-z(t") < Mem(e'-2) (x-a,),

i.e., t'-t +© as m -+ 0. Hence, for all m small enough, and all

t € [€,€+1], a < z(t) <a Moreover, taking m smaller, if necessary,

.
z(E-1) - a, - 2(z(t-1) - 2(t))
(2.2)

A2(€-1) A, (E-1) x2€
- a2 - e - al - 2(e - e ) > (1/2)(a2-a1).

Fix m < K so that (2.2) is satisfied. For any 6 > 0 let gd(x)

be a Cl-function such that gs(x) = h(x) for x € (%X-6,%+8) and
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0 < h(x) - ge(x) <8 for x ER. If s' = s'(§) 1is such that
- ()

Azs' R . Az(s'(6)+e)
a, - e = x+6, then s8'(8) *+t as & =+ 0. If ¢6(6) -a, - e .
then ¢6 +¢ as §+0 in C((-1,0], R). Let yé(t), t > 0, be the
At
2

solution of (l.l(b,gs) through ¢6 and define zd(t) = a2 -e .

t < s'(8), zd(t) = yd(t-s'(G)), t > 8'(8). Then Zg satisfies (1.1)(b.gé)
on (-®,2), By continuity, ZG(C) + z(t) as 6 + 0, uniformly on com~
pact intervals. Let s" = s'"(§) be the smallest number such that
25(s"(6)) = %~8. Then s"(8) exists and s'"(8) > s'(8). Moreover,

since z(t+l) < X, it follows that 8"(8) < s'(8) +1 for & >0

small enough. Hence, s"(§) *t as &6 + 0. For & >0 small, it follows

that za(s"(6)+9) - a, 1is positive and nonincreasing. Moreover,

1

zé(s"(ﬁ)-l) - < g - a, < K. Finally, by (2.2and for § small enough,

z5(s"(8)-1) - a - 2(25(8"(5)-1) - z5(s"(8)) 2 o.

Fixing such a small &§ > 0 and letting f = gg on [al,azl. x(t) = zG(t).

we see from Lemma 2.2 that limt*”x(t) = Gl, limt*mx(t) - 02. This

proves the lemma.

Corollary 2.4. Let a,6 < *°° be arbitrary real numbers, and,

1 < B2k+1
for every 1 =1,...,k, let oy, be any negative number. Llet M > 0

be arbitrary. Then there exists a g € Gk' such that 8(81) « 0 for

= ' - -,
i =1,...,2k+1, g (aZi) m,, for 1 =1,...,k, g 1s affine on

(=, a) U (8),41+°) and in a neighborhood of each a,, lg(x)] <M for

x € [a Moreover, for every 1 = 1,...,k there are solutions

1222kl

x,(t) and x,(t) of (1.1)(b,g) on (~=,@) such that a,, ; < x,(t) < a,,




-10-

< x < - = i~ =
a1 X (8) Cay g ER, x, (4%) =ay, 1y x (=) =y, x () =,

;1 (=) = a

2

2i°

We also need some lemmas on approximation of elements in Ck by

analytic functions.

Lemma 2.5. For every g € Gk and every positive, continuous function

¢: R *R there exists an analytic function h € Gk such that

lg(x) - h(x)| + |g"(x) - W' (x)]| < ¢(x), x €R.

. < oo < .
Proof: Let a; 85141 be the zeros of g. There are numbers
- _+ - + -
bi’ bi’ i=1,...,2k+l, bi < a; < bi such that g(x) < 0 for x ibl'

+ -+
> ' .
g(x) >0 for x> b2k+l’ g'(x) # 0 for x € [bi’bi]’ and the intervals
-+
[bi’bi] are palrwise disjoint.
Let Yy: R >R be a positive, continuous, function such that

Y(x) < ¢(x) for x €ER, ¥ 1is integrable, Y(x) < -;—lg(x)l for

k41 1 2kl
x€ U (b, ,b,), ¥(x) <=|g'(x)] for x € U [b, ,b,]. By Whitney's
11 2 e 171

Lemma ([3])), there is an analytic function h: R * R such that

lg(x) - h(x)| + |g'(x) - h'(x)] < Y(x) for x €R.

X X

h(s)ds, G(x) = J g(s)ds, then

We will show that h € Gk' If H(x) = f
0

0
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x X
H(x) = ] g(s)ds + J (h(s) - g(s))ds
0 0

x
> G(x) - f |h(s) - g(s)lds
0

x
> G(x) - I VY(s)ds > G(x) - Lﬁw(s)ds + ®
0
as |x| + =,
2k+l .
If x¢ U (bi’bi)’ then |g(x)-h(x)| < W(x) < -2'|g(x)| and, hence,
i=1
h(x) # 0. It follows that all zeros of h must be contained in
2k+1 2k+1

u (b;,bi). If x€ U [b;,b:], then |g'(x)=h'(x)| < ¥(x) <'%|g'(x)!

i=1 i=]1

and, hence, h'(x) $# 0. This means that h has at most one zero in
-+ - - + +

[bi’bi]' Since sign h(bi) = sign 8(b1) ¥ sign g(bi) = gign h(bi)’ ic

follows that h has exactly one zero in [b;,b;] and this zero is

simple. The Lemma 1is proved.

Lemma 2.6. Let a,6 < +-+ < a and a, < *+* < En be real numbers.

1 n — 1
Then there are q,M, 0 < q <M and there is an analytic mapping

for x €R, a(ai) = a

a: R +*R such that a is a diffeomorphism of R onto R, q < a'(x) <M

1 i=1,...,n.

Proof: Let f: IR *R be a Cl-function such that f'(x) > 0 for x €RR,

f is affine on (—w,all ) [an,oo) and f(ai) = 51, i=1,...,n. Let

= ' = — =
Y 1“fx€m f'(x) >0 and vk(x) 12k(x ai). k=1,...,n. By a simple
calculation,

M= n sup {(tanh(vk(ak)))_l} +1
k

-1 d(tanhovk) (x)
+ sup sup {(tanh(vk(ak))) © --—-————} <
k R

dx
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By Whitney's Lemma, there is an analytic function h: R +R such that
for x €R,

[h(x) - £x)| + |h'(x) - £'(x)]| < y/M.

If a =h + k, where

n f(ak) - h(ak)
O A Ty x e

then a 1s analytic,
latx) - £G)| < [h(x) - £ + |k(x)] < v/3M + y/3.

Hence a(x) -~ +» ag x + *t» and o 1is surjective. Also,

it

lat(x) - £'(x)| < |h'(x) = £' ()| + [k'(x)] < v/3M + /3 ?

which implies ja'(x)| < ®. Furthermore,

SUPy eRm

%i £'(x) -—L-%—ia'(x).

-~

M
Thus, q < a'(x) <M, x €ER and a {s a diffeomorphism. Finally, {t

is obvious that o.(ai) =a,1=1,...,n, and the lemma is proved.

i)

Corollary 2.7. Let g and g be two analytic functions belonging to

Gk' Then there is a continuous mapping H: [0,1) = G, , such that

k
H(0) = g, H(1) = g, and, for every t € [0,1], H(t) 1s analytic.

Proof: Let a,< - <a and &, < ---<5n be the zeros of g and g,

1

resp. Let a be as in Lemma 2.6. Define for t € [0,1] and x €R
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g((1-2t)x + 2ta(x)) ,» 1f t <1/2

(H(t)) (%) = {
(2-2t)g(a(x)) + (2t-1)g(x), if ¢ > 1/2

It is easy to show that H satisfies all requirements of the Corollary.
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3. The main result .

In this section, we state and prove the main result.

Lemma 3.1. Let g €G  and a be an unstable zero of g. If x(t),

t € (—o,©), 1s a solution of (1.1)(b,g) emanating from a, then either

x(t) >a for all t or x(t) <a for all t.

Lemma 3.1 gives a limitation on the maximal number of equivalence
classes that can occur in Gk. The remainder of the discussion is con-
cerned with k = 2. There are at most five equivalence classes in Gz;

namely, those described in the introduction. The main result is

Lemma 3.2. There is an analytic function in each of the equivalence

classes {2[1,5],4[3,5]}, {2(1,3},4(1,5]} in G,.

Theorem 3.3. There are exactly five equivalence clasges in Gz. Each

equivalence class contains an analytic function.

Proof of Lemma 3.1:

1 0 0 2
Let V() = G(¢(0)) + 7 j b'(e)IJ g(¢(s))ds)"do,
-1 5]
rx
where G(x) = J g(s)ds.
0

Then the derivative 0(¢) of V along solutions of (1.1) (b,g) 1is given
by

- 1 0 2 1f° 0 2
(3.1) V() = - Eb'('l)[J g(¢(0))del” - 5[ b"(0) [| g@(s))ds] a8,
-1 -1

J!‘)

(see [1]).
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Since 1lim x(t) = a, it follows that 1lim V(XL) = G(a).
tr—x > —o©

N S U VU .

If the Lemma is not true, there exists a to > 0 such that x(t& = a. By
0 0 2
(3.1), V(xt ) < G(a). Hence %j b‘(e)[J g($(s))ds]"d® < 0, a contradiction
0 -1
which proves the Lemma.

0

¥ RSN

Kise Mialngl

Proof of Lemma 3.2: We will show that there is a g € G representing

q -
ORISR

2
class {2[1,5),4[3,5]}. Symmetry in the proof to follow implies that

;W -....‘.1. b ik S

there is8 a g' € G, representing class {2[1,3),4[1,5]}. Since these
classes are stable classes, Lemma 2.5 implies that g and g' can be

chosen analytic, which proves the lerma. Choose a, < a, arbitrarily.

Define f € Cl such that f has exactly two zeros, a1 and 82’

' >
al. a2 and on (-w,al) U (az,w), f (al)x 0,
] 2 t

| f'(az) =m, < 0. There is a unique Az > 0 such that x(t) = a, + e ,

‘ ‘ t € (~.»,®) 1is a solution of (1.1)(b,f). Let ¢t

f 1=

affine in a neighborhood of

0 > 0 be arbitrary and

2 let y(t), ¢t € [0,1], be defined as




LY o o
h— o — -

Figure 2

t (-s
y(t) = X(to) - I (J b(6) f(x(s+8))d6)ds
0‘’/-1

Hence, there s a 0 < t, < 1 such that y(t) >0 for t € [0,t,] and,
so, y(tl) > x(to). Define E such that £fa=f on (-w,x(to)], ; is
affine on [x(to),y(tl)], E(y(tl)) = 0, and f is affine on [y(tl),m)
with negative slope. If ¢(8) = x(t0+9), 8 € {-1,0], let y be the
solution of (1.1)(b,§) through ¢, t > 0. Then obviously y(t) > y(t)
for t € [O,tll. If we define X(t) = x(t), t < tys x(t) = i(t-co),

t > to, then x satisfies (1.1)(b,f) on (-w,), Moreover, there is an

8 such that §(31+6) > y(tl) for 8 € [-1,0], and i(sl+6) is

1~ %

nondecreasing on {-1,0]. Now we perturb f a little to obtain a Cl-map
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h which coincides with E on [y(tl),”), and h has four simple zeros,

< < < =
a, a, a3 3, where a, € (x(to),y(tl)), a, y(tl) and there is a
solution z(t) of (1.1)(b,h) on (—»,o) such that 2z2(t) = a, as t - -
and, for some Sy €ER , z(sz+6) > y(tl), 6 € [-1,0], z(sz+6) is non-
decreasing on [-1,0] (cf. Fig. 2). Now the application of Lemma 2.2

and the argument from the proof of Lemma 2.3 easily completes the proof

of the theorem.

Proof of Theorem 3.3: Let g be an analytic function representing class

{2{1,5],4(3,5]}. By Corollary 2.4, there exists an f € 62 repregenting
class {2{1,3],4[3,5]}. Since the class {2{1,31,4(3,5]} is ~-stable,
we infer from Lemma 2.5 that there is an analytic function g € G2 repre~
senting {2[1,3],4[3,5]}. By Corollary 2.7, there is a continuous map

H: [0,1] * G, such that H(0) = g, H(1) = g and H(s) 1is an analytic

2
function for every fixed s. Let al(s) < az(s) < a3(s) < ab(s) < as(s)
be the zeros of H(t). It follows that ai(s) is continuous for
i=1,...,5.

o= sup{s € [0,1]: the solution x(s',t), t € (-»,®) of
(1.1)(b,H(s')) emanating from az(s') and staying to the right of az(s') ?

Let s

is such that limt*wx(s',t) = a,(s'), for every 0 <s'< s}. It follows
easily that 0 < s, <1 and that lim , x(s;,t) ¢ {33(50).35(80)}.
Hence limt*mx(so,t) - 84(80)' i.e., H(so) represents the saddle connec-

tion {2[1,4],4(3,5]}. By using g' instead of g where g' |is

analytic and represents class {2{1,3],4(1,5]}, we analogously prove that
there is an analytic function € 02 representing the saddle connection

{2[1,3],6[2,5]}. This completes the proof of Theorem 3. 3. }
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